

PETROLEUM REFINING LIBRARY (PRL)
FOR ANYLOGIC

USER MANUAL

www.prlsim.com

version 1.1
26.07.2025

http://www.prlsim.com/

2

Contents

1 INTRODUCTION .. 3

1.1 What is Petroleum Refining Library? .. 3

1.2 Petroleum Refining Library license ... 3

1.3 Documentation license .. 3

1.4 About this manual .. 3

1.5 Acknowledgements .. 3

2 PETROLEUM REFINING LIBRARY STRUCTURE ... 4

2.1 Petroleum Refining Library structure .. 4

2.2 FREE TO TRY version... 7

3 COMPATIBILITY ... 8

4 FIVE STEPS TO RUN PETROLEUM REFINING LIBRARY ... 8

5 USING PETROLEUM REFINING LIBRARY ... 9

5.1 Source.. 9

5.2 Plant .. 10

5.3 Control ... 11

5.4 SeparatorLight ... 12

5.5 MixerLight .. 12

5.6 Separator ... 13

5.7 Mixer ... 13

5.8 ShipmentNode ... 13

5.9 ReservoirPark ... 14

5.9.1 RpFlowing ... 15

5.9.2 RpAccumulative .. 15

5.10 Optimizer ... 16

5.11 GasOwnNeeds.. 16

5.12 Dispose .. 16

5.13 FlowQuota ... 17

5.14 ProductMixer ... 17

5.15 LoadingRack ... 18

4 AUXILIARY DATABASE ... 18

4.1 Database references .. 19

4.2 Database tables ... 20

5 CREATING AND EXECUTING THE PRODUCTS PRODUCTION “REQUESTS” ... 28

6 PETROLEUM REFINING LIBRARY ENUMS ... 29

7 RECIPES .. 29

8 TYPES OF MEASURING .. 29

9 FAQ .. 29

3

1 INTRODUCTION

1.1 What is Petroleum Refining Library?

Petroleum Refining Library (PRL) is an additional palette library for Anylogic (www.anylogic.com). It is

based on Anylogic Fluid Library and helps to build a different kind of imitation models for Oil & Gas industry.
Like Anylogic, PRL fully supports Java.

Base PRL features:

• building a different kind of imitation models like “digital twins” in Oil & Gas industry;
• performing an accurate “balance” calculations of incoming flows and resulting products;
• make detailed optimization flows calculations within Oil & Gas refining;
• taking into account all unique features of specific Oil & Gas companies for maximum
accurate forecasting;
• setting and solving any tasks of the current processing management in Oil & Gas industry.

Editions of PRL:

• free edition – “free to try” version with limited performance and license;
• commercial edition – high-performance version of PRL with business-friendly license;
• advanced commercial edition – commercial edition of PRL with full source library code.

Free Edition of PRL has a corresponding warning on every page, and has a limit on model time duration

(max 45 days). Commercial Edition is a heavily optimized version of PRL, containing all library components without
any restrictions.

There is also an advanced commercial PRL license, under which you’ll receive full source code.

1.2 Petroleum Refining Library license

The PRL free edition is distributed under a license that favors non-commercial usage and operates under a

"free to try" principle.
The PRL commercial edition and advanced commercial edition are distributed under a license that is friendly

to commercial users. A copy of the commercial license can be found here

1.3 Documentation license

This reference manual is licensed under BSD-like documentation license:

Copyright 2025 by Petroleum Refining project. All rights reserved.

THIS DOCUMENTATION IS PROVIDED BY THE PETROLEUM REFINING PROJECT "AS IS" AND ANY

EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE PRL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
DOCUMENTATION, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1.4 About this manual

This manual provides general information about PRL. It contains a description of every PRL agent and some

examples. To know more, please visit our website, or YouTube channel.
On our website you can also found a Java API that describes all available PRL functions.

1.5 Acknowledgements

PRL was not possible without contributions of the following open-source projects:
• lpSolve – mixed Integer Linear Programming (MILP) solver. LpSolve solves pure linear, (mixed)

integer/binary, semicont and special ordered sets (SOS) models;
• java ilp - a java interface to integer linear programming (ILP) solvers.

https://files.prlsim.com/docs/PRL%20User%20License%20Agreement.pdf.
http://www.prlsim.com/
https://www.youtube.com/@prlsim
https://www.prlsim.com/Docs

4

You MUST add these libraries to your Anylogic model before using PRL. Working versions of these
libraries are always located in the \lib\ subfolder

2 PETROLEUM REFINING LIBRARY STRUCTURE

2.1 Petroleum Refining Library structure

The PrlConstants class contains final static constants for PRL. Full description can be found in PRL API.

All PRL agents extend from the PrlObject agent. They can be divided into two categories: agents with
interface (such as Plant or RpAccumulative), which extend from PrlGUIObject (PrlGUIObject extends from PrlObject),
and agents without interface (such as Source or Separator), which extend directly from PrlObject.

All PRL agents have an inner Constant class (accessed via the public constant variable) that contains local
additional Agent settings.

Many agents also contain an inner StatisticsAgentName class (accessed via the public statistics variable) to
access various statistical indicators (enter or exit flow rates, flows mass, etc.). Full description can be found
in PRL API.

Some agents also contains inner agents. For example, Source agent contains an inner SourceElement agent
for modeling incoming flow from a single source (oil or gas field), Plant agent contains an inner PlantLine agent for
working with the single line.

Some parameters values can be set in *.ini files. The name of each *.ini file and it’s location are formed

according to the following rule: the directory name and the name of the file, created by the agent class name (for
example:

BaseConstant.INI_DIRECTORY_PATH + Source.class.getSimpleName() + “.ini”

will search *.ini file in: “\Ini\Source.ini”). To access a specific agent in the *.ini file, create a section with its

system name (in square brackets). For example: [sourceAgent1].

5

PrlObject

PrlGUIObject

SourceElement []

Source

Separator

SeparatorElement []

SeparatorLight

Mixer

MixerLight

ProductMixer

SourceElement

PlantLine

PlantLineState

Optimizer

GasOwnNeeds

Dispose

Control

Plant

ReservoirPark

RpFlowing

RpAccumulative

Constant

Constant

StatisticsReservoirPark

StatisticsProductMixer

StatisticsPlant

PrlConstants

StatisticsSource

StatisticsSeparator

Constant

MixerElement []

Constant

StatisticsMixer

Constant

ProductMixerEnter []

Constant

Constant

StatisticsGasOwnNeeds

Constant

StatisticsMixer
Constant

RpTank

Constant

Constant

Link

Loss

StatisticsFlowStructure

StatisticsFlowStructure

Constant

Constant

Constant

ShipmentNode

StatisticsShipmentNode

Constant

ControlRequest

FlowQuota

Constant

LoadingRack

StatisticsLoadingRack

Constant

Train

MAIN PETROLEUM REFINING LIBRARY AGENTS (AVAILABLE IN ANYLOGIC PALETTE)

Source is an advanced container that allows to create various types of entry flows (oil, unstable natural gas liquid,
etc.). Source agents enable to set daily or monthly flow plans from the attached database, facilitate flow
smoothing for monthly values, and provide many other functions

Plant is an agent, that allows for the configuration of the flow-splitting process by various types of processing
plants in the Oil & Gas industry (such as rectification, catalytic reforming, etc.). The Plant agent contains a wide
variety of settings that enable the establishment of basic operating conditions for almost any kind Plant in
Oil & Gas

RpFlowing is an advanced park agent that extends all Reservoir park agent properties. RpFlowing is
characterized by continuous inflows and outflows that fill and unload some parallel connected tank (called
"maps"), RpFlowing is usually used for "smoothing" outgoing flow products

RpAccumulative is advanced park agent, that extends all Reservoir Park agent properties. RpAccumulative
contains many options, which are necessary for "cumulative" reservoir parks. This agent implements procedures
of accumulation, passportization (compounding), and shipment of products. In addition, RpAccumulative contains
built-in mechanisms for tracking product shipment plan with the ShipmentNode agent

6

ShipmentNode is an agent that allows to set plans for pumping products and monitor the degree of their
implementation during modeling. This agent contains a variety of settings that allow to create different options for
pumping products (daily, monthly) etc.

Control is an agent that collects all requests from RpAccumulative and ShipmentNode agents and tracks their
completion level. Control agent allows to make an effective request management because it contains some Java
Interface elements that enable setting a different rules for processing requests

SeparatorLight is an advanced separator (split) agent that allows to split the input flow into two outputs.
In comparison with the AnyLogic FluidSplit, this agent enables to direct the entire flow to ONLY ONE output, set
the input flow speed limit, and implement many other functions

MixerLight is an advanced mixer (merge) agent that allows to combine two entry flows into one exit flow.
In comparison with the AnyLogic FluidMerge, this agent enables to set an exit flow speed limit, and implement
many other functions

Separator is an advanced separator (split) agent that allows for splitting an incoming flow into any number of
exits. In comparison with the AnyLogic FluidSplit, this agent allows for directing the entire flow to ONLY ONE
output, setting as many exits as the user wants, establishing a user-defined separation factor, entering a speed
limit, and implement many other functions

Mixer is an advanced mixing (merging) agent that allows for merging of any number of input flows into one output.
In comparison with the AnyLogic FluidMerge, this agent allows users to set as many input flows as desired,
establishes an input speed limit, and implement many other functions

ProductMixer is an advanced product mixing agent, that allows for the optimal mixing of input flows and product
additives to create a desired product (such as petrol, kerosene, etc.). It is known that the creation of most products
is accompanied by a number of requirements (such as octane number, sulfur content, saturated vapor pressure,
aromatics, etc.). This agent takes these requirements into account and mixes incoming flows in an optimal way
to ensure their simultaneous fulfillment

Optimizer is an agent, that allows to set up and solve different kinds of linear programming (LP) problems
(for example, splitting the input flow between plants and plant lines with the objective of minimizing residuals).
The Optimizer agent can solve two types of LP problems.

The first type is "parametric", where user has a ready-made lpSolve file (*.lp) with specific parameters.
In this case, the Optimizer will automatically replace the parametric texts in the *.lp file with numeric values, solve
the LP problem, and save it with a new name. This type of task is useful for complex LP problems when the user
needs to see all the equations directly, but it is quite slow.

The second type allows the user to create own LP problem equations and solve it directly, by using the
internal Optimizer agent Java ILP Interface

GasOwnNeeds is an agent, that allows to calculate the amount of gas for own needs (GON) and distribute it
among Plants. As usual, the GON flow depends on the season, list of Plants, their modes, and load levels

FlowQuota is an agent that allow to set periodic plans for pumping products. For example, set a plan for the
maximum monthly (or daily) pumping. Required to account for the maximum capacity of the pumping equipment

LoadingRack controls the loading of refined products into railway tanks/trucks at a loading rack, managing train
schedules, loading operations, wagon assignments, product quantities, supply/removal durations,
passportization, and overseeing the state machine for the loading workflow (supply/load/remove)

Dispose is an agent, that allows to calculate the amount of disposed flows. In comparison with AnyLogic
FluidDispose, this agent enables the collection of the same type of flows into one agent, saves the necessary
statistics, and destroys them (for example, collecting all gas flows per flare)

ADDITIONAL PETROLEUM REFINING LIBRARY AGENTS (NOT AVAILABLE IN ANYLOGIC PALETTE)

PrlConstants is an internal PRL class, that contains all base constants. Since all variables in the PrlConstants
class are final and static, user can call them directly. For more information, please refer to the PRL API

String unit = PrlConstans.TONS_UNIT; //Return ton(s)

PrlObject is the base agent for all PRL agents. It contains basic methods that are available for use in a model.
For more information, please refer to the PRL API

PrlGUIObject is the base agent for all PRL agents with an interface. It extends PrlObject agent and contains
basic interface elements

7

SourceElement is an advanced source agent, that allows to create a various types of incoming flows (such as
oil, unstable natural gas liquid, etc.). SourceElement is located in the Source and ProductMixer (as an
additive) agents

Link is an agent that allows to accept a flow on FluidEnter and pass it to FluidExit. Required for internal work
with PRL flows

Loss is an agent that allows to destroy the incoming flows. Required for working with loss flows in Plant and
ReservoirPark agents

Constant is an internal PRL class that contains a list of constants for a specific type of agent. This class also
includes a built-in StringBuilder. All constants are accessed via the attached agent's internal public variable
constant. For more information, please refer to the PRL API

// ReInitialization a constant

self.constant = self.new Constant().builder().MENU_IF_USE_DIRECT_FLOW(false).build();

ProductMixerEnter is an agent that allows for the separation of the ProductMixer entry flow for mixing and
residuals. ProductMixerEnter is located within the ProductMixer agent

 PlantLine is an agent, that allows to configure Plant line settings. PlantLine is located in the Plant agent

 PlantLineState is an agent that represent one of line plant state

 RpTank is an agent that allows to model tank for OIL and Gas refining

 MixerElement is an agent, that allows to mix to flows to one

 SeparatorElement is an agent, that allows to separate one flows to two

PlantLineState is an agent that allows for the configuration of plant line states, including “temporary” states.
PlantLineState is located within the PlantLine agent

Many Plants in Oil & Gas refining have a temporary states. For example, if plant is used to make
aviation kerosene, it must be in a temporary mode for a day before switching to aviation kerosene
production mode

ReservoirPark is an agent that allows to configure the basic options for ReservoirPark. ReservoirPark is a base
class for RpFlowing and RpAccumulative agents

ControlRequest is an internal PRL class which contains one shipment request for A-D priorities from
RpAccumulative and ShipmentNode agents in the Control agent

StatisticsAgentType is an internal PRL class, that contains various statistics information about the agent.
As usual, this class includes Enter, Exit, and Database subclasses. For Reservoir Park, it also contains a
Remains subclass, and for ProductMixer, it includes a Constrain subclass. All methods are accessed via the
internal public variable, statistics. For more information, please refer to the PRL API

StatisticsFlowStructure is an internal PRL class, that allows for the calculation of a current flow structure at
the entrance of a Plant or Reservoir Park. Flow structure is an important indicator, as it affects the values of
the splitting recipes

2.2 FREE TO TRY version

PRL comes in three versions: one "free to try" version and two commercial versions.

The "free to try" version contains the following restrictions:
• limited set of PRL agents;
• message “THIS IS THE FREE VERSION TO TRY; PLEASE BUY A FULL VERSION” on every PRL

agent page;
• maximum simulation duration of 45 days.

The "free to try" version is necessary for familiarizing oneself with the basic capabilities of PRL and solving

simple business problems. To build full-fledged models, please purchase the commercial version.

8

3 COMPATIBILITY

This PRL version is compatible with every modern version of Windows (Vista, 7, 10, 11, etc.). PRL was

developed in AnyLogic 8 and will be updated along with the base AnyLogic product. Stay tuned for updates on
our website

4 FIVE STEPS TO RUN PETROLEUM REFINING LIBRARY

Must-read! To successfully work with PRL in AnyLogic, you MUST follow these steps:

1. Please click on Palettes -> Manage Libraries -> Add. Add PRL library to your model.
2. Add a PRL database to your model. You can find the DB_Refining.accdb database in the PRL folder.

At default PRL database is based on Microsoft Access

3 Set Anylogic model time units to days and all Source rates (if you have it) to mass (tons/s or kilograms/s)

To ensure the law of conservation mass, all flows MUST be specified in units of mass. It is also possible
to show flows values in other measure units (for example speed), by using special PRL classes and methods

4 Add required PRL external *.jar libraries to your model (you can found them in \lib\ subfolder)

http://www.prlsim.com/

9

5 Remember that ALL FluidExit and FluidEnter Anylogic elements that you are using with PRL library MUST

allow for highlight the related flow product name

FLUID BLOCK NAME
EXAMPLE

STATUS NOTE

fluidExit_UNGL OK
UNGL is unstable natural gas liquid. This product can be found in the built-in database. The separation
symbol "_" is correct

fluidExit1_UNGL,

fluidExit2_UNGL
OK

UNGL is unstable natural gas liquid. This product can be found in build in database. The separation

symbol “_” is correct. FluidExit names differ in the first part

fluidExit1_UNGL,

fluidExit1_WMW
OK

UNGL is unstable natural gas liquid and WMW is water-methanol mixture. These products can be found

in build-in database. The separation symbol “_” is correct

fluidExit_OGCM Wrong
OGCM is oil and gas condensate mixture. However, if OGCM can’t be found in the built-in database,
PRL shows a mistake

fluidExit Wrong
Separation symbol “_” is not found. There is no product with the name fluidExit in the built-in database.

PRL will try to search missing fluidExit product in database

fluidExit1_UNGL,

fluidExit1_UNGL
Wrong There are two identical FluidExit names. Anylogic will not allow you to create them 😊

fluidExit!UNGL Wrong
Separation symbol “_” is incorrect and PRL will try to search missing fluidExit!UNGL product in the built-

in database

fluidExitUNGL Wrong
Separation symbol “_” is not found and PRL will try to search missing fluidExitUNGL product in the
built-in database

fluidExit_ZZZ Wrong
What is ZZZ? If this “product” can‘t be found in build in database, PRL shows a mistake. But separation

symbol “_” is correct

Our practice shows that it is most convenient to name connections as
fl_ExitAgent_EnterAgent_ProductName (for example: fl_PlantDK_RpKerosine_Kerosine)

6 (optional) Update the built-in AnyLogic fluid library solver. After each event in your model, AnyLogic will

automatically call an external Apache LP solver to solve the LP problem of maximum graph flow. Extensive use of
this library has demonstrated the instability of the default AnyLogic settings for the fluid library, particularly when
solving problems for large systems, such as Oil & Gaz. We recommend to update the built-in AnyLogic solver for
improved productivity and to reduce error messages like “No Feasible Solution”. Please contact support@prlsim.com
for more information and to get a corrected solver

5 USING PETROLEUM REFINING LIBRARY

5.1 Source

Source is an advanced container that allows to create various types of entry flows (oil, unstable natural gas

liquid, etc.). Source agents enable to set daily or monthly flow plans from the attached database, facilitate flow
smoothing for monthly values, and provide many other functions.

Each Source agent contains arrays of SourceElement agents. SourceElement agent can generate an oil or
condensate flow in accordance with a given plan. The execution of the plan is carried out by the SourceElement
automatically, which calculates the instantaneous pumping rate at the time the plan was set.

Each Source agent contains an internal class Statistics with accessible via public variable statistics. This
class contains many methods for collecting and analyzing data from the Source agent. Look PRL API for more
information.

10

KEY STEPS OF INITIALIZATION

protected void loadIniFile();

protected void initialize() {

 handleBeforeInitialize();

 //add source elements

 statistics = new StatisticsSource(this);

 handleAfterInitialize();

}

!connectAfterLaunch?

public void connect(FluidEnter[] outputFlows);

private void loadPlansFromDatabase();

HITS AND TIPS

1 The size of the exit[] array must be equal to SourceElement.size() or equal to one. In the latter case, all exit
flows will be automatically mixed into one

2 All FluidEnter blocks, associated with the Source agent, must have a naming structure that allows identification
of flow product types

3 The onSpeedChange() event is triggered with an atomic delay. This is necessary to ensure that all speed
changes been completed before the event is called

4 Processing plants are usually connected to groups of sources, rather than just one. It is rare for each individual
source to have its own dedicated pipeline leading to the plant. Typically, groups of sources mix their flows before
they enter the processing plants. In this scenario, the result flow that has already been mixed comes to the processing
plant. That's why all sources in the Source agent are not individually set up. If an individual flow reaches the
processing plant it should be identified in the database by a unique group number

5 Each Source agent allows to set of two types of plans: plan and plan2. The plan2 variable is auxiliary and
depends on the value of the plan variable. For example, if the plan variable represents the mass of unstable natural
gas liquid, then the plan2 variable may determine the equivalent volume of gas production or the value of the gas
condensate factor

6 PRL will automatically create statistics tables in the AnyLogic database for each SourceElement agent,
according to the following template: PrlConstants.DB_STATS_PREFIX + "source_" + sourceId

7 To change agent constants, use the build() method in the inner Constant class

// Change the Interval (in hours) between successive smoothing updates
source.constant = source.new Constant().builder().SMOOTHING_DURATION (20).build();

5.2 Plant

Plant is the major agent that allows the configuration of flow-splitting processes by various types of oil and

gas processing plants (such as rectification, catalytic reforming and others). The Plant agent contains a variety of
settings to establish basic operating conditions for any type of oil and gas plant.

11

KEY STEPS OF INITIALIZATION

protected void loadIniFile();

//Load base Plant parameters (id, full name, description)

protected void initialize();

//Load lines number, and connect all Plant elements

//Load additional textbox, combobox, checkbox, links values

protected void loadLineConfigurationsAndMenu();

statisticsFlowStructure = new StatisticsFlowStructure [getLinesCount()];

//Mixes enter flow according to the specified proportions (if necessary)

public void applyInputFlowMix();

handleAfterInitialize();

//Create events for line repairs (if necessary)

protected void scheduleRepairEvents();

//Create events for special dates (if necessary)

protected void createSpecialDates();

//Select first Plant line

cmdLines.setValueIndex(0, true);

ICONS

5.3 Control

Control is an agent that collects all requests from RpAccumulative and ShipmentNode agents and tracks

their completion level. Control agent allows to make an effective request management because it contains JAVA
Interface elements that enable setting different rules for processing requests.

ICON INDEX

0

1

2

3

4

5

6

7

12

 Each model can contain no more than one Control agent!

Control agent contains two type of views:
- requests for products pumping to fulfill month plans, received from ShippingNode agents;
- requests to fulfill production pumping plans, received RpAccumulative from ShipmentNode (priority A), as

well as additional tank loading, due to large pumping plans for the next month (priority B), additional tank loading to
the minimum level (priority C), as well as additional mass for entering the fleet by user's request (priority D).

Product shipment requests (priority A) received from ShippingNode and RpAccumulative agent are not

identical. ShippingNode agent generates a “direct" request to shipping a certain amount (mass) of product, whereas
RpAccumulate takes into account the current tanks product residue, losses, and additions.

5.4 SeparatorLight

SeparatorLight is an advanced separator (split) agent that allows to split the input flow into two outputs.

In comparison with the standard Anylogic FluidSplit, this agent enables to direct the entire flow to only ONE output,
set the input flow speed limit, and implement many other functions

KEY STEPS OF INITIALIZATION

protected void loadIniFile();

handleAfterInitialize();

HITS AND TIPS

1 All split and merge functions are split (merge) flows by setting a new fraction value only on one exit (enter)
SeparatorElement (MixerElement) agent. The second exit (enter) automatically equates to 1.0. This significantly
improves performance, as it requires only a single recalculation of the internal AnyLogic max flow LP problem

2 If the useIniSettings parameter is true, then agent will try to load fraction1 and speedLimit parameters from
*.ini file to use them as start values

3 When specifying the separation (mixing) factors, normalization is not needed. It will be performed automatically

5.5 MixerLight

MixerLight is an advanced mixer (merge) agent that allows to combine two entry flows into one exit flow.

In comparison with the standard Anylogic FluidMerge, this agent enables to setting an exit flow speed limit, and
implement many other functions

KEY STEPS OF INITIALIZATION

protected void loadIniFile();

handleAfterInitialize();

HITS AND TIPS

1 All split and merge functions are split (merge) flows by setting a new fraction value only on one exit (enter)
SeparatorElement (MixerElement) agent. The second exit (enter) automatically equates to 1.0. This significantly
improves performance, as it requires only a single recalculation of the internal AnyLogic max flow LP problem

2 If the useIniSettings parameter is true, then agent will try to load fraction1 and speedLimit parameters from
*.ini file to use them as start values

3 When specifying the separation (mixing) factors, normalization is not needed. It will be performed automatically

13

5.6 Separator

Separator is an advanced separator (split) agent that allows for splitting an incoming flow into any number

of exits flows. In comparison with the standard Anylogic FluidSplit, this agent allows for directing the entire flow to
only ONE output, setting as many exits as necessary, establishing a user-defined separation factor, entering a speed
limit, and implement many other functions

The Separator (Mixer) agent does not require an unique flow product names at the exit (enter) of the agent.
If more than one exit (enter) flow has the same product name, they will be added to the Separator (Mixer)
in the order in which they are found in the incoming (out coming) flows array

KEY STEPS OF INITIALIZATION

protected void loadIniFile();

public void initialize(inputFlow, outputFlows) {

 statistics = new StatisticsSeparator(this)

 handleAfterInitialize();

}

!connectAfterLaunch

HITS AND TIPS

1 All split and merge functions are split (merge) flows by setting a new fraction value only on one exit (enter).
The second exit (enter) automatically equates to 1.0. This significantly improves performance, as it requires only a
single recalculation of the internal AnyLogic LP max flow problem

2 When specifying the separation (mixing) factors, normalization is not needed. It will be
performed automatically

5.7 Mixer

Mixer is an advanced mixing (merging) agent that allows for merging of any number of input flows into one

output. In comparison with the standard Anylogic FluidMerge, this agent allows users to set as many input flows as
desired, establishes an input speed limit, and implement many other functions

The Separator (Mixer) agent does not require an unique flow product names at the exit (enter) of the agent.
If more than one exit (enter) flow has the same product name, they will be added to the Separator (Mixer)
in the order in which they are found in the incoming (out coming) flows array

KEY STEPS OF INITIALIZATION

protected void loadIniFile();

public void initialize(inputFlow, outputFlows) {

 statistics = new StatisticsMixer(this)

 handleAfterInitialize();

}

!connectAfterLaunch

HITS AND TIPS

1 All split and merge functions are split (merge) flows by setting a new fraction value only on one exit (enter).
The second exit (enter) automatically equates to 1.0. This significantly improves performance, as it requires only a
single recalculation of the internal AnyLogic max flow LP problem

2 When specifying the separation (mixing) factors, normalization is not needed. It will be performed
automatically

5.8 ShipmentNode

ShipmentNode is an agent that allows to set plans for pumping products and monitor the degree of their

implementation. This agent contains a variety of settings that allow to create different options for pumping products
(daily, monthly)

14

 Each ShipmentNode agent has a strict rule: one ShipmentNode agent for one product

KEY STEPS OF INITIALIZATION

protected void loadIniFile();

protected void initialize() {

 mixer.initialize(inputFlows, fEnter);

 statistics = new StatisticsShipmentNode(this);

 handleAfterInitialize();

}

eLoadPlans.restart(); //Load plans from the DataBase

5.9 ReservoirPark

ReservoirPark is an agent, that allows to configure the basic options for ReservoirPark. This agent contains

a set of basic properties and methods that are used in RpAccumulative and RpFlowing agents.

KEY STEPS OF INITIALIZATION

protected void loadIniFile();

protected void initialize() {

 statistics = new StatisticsReservoirPark (this, false);

 statisticsFlowStructure = new StatisticsFlowStructure(this);

}

//Update enter spped mix recipe

protected void applyInputFlowMixing();

handleAfterInitialize();

protected void loadTanksFromDatabase();

// Create events for repair

protected void scheduleTankRepairs();

ICONS

ICON INDEX

0

1

2

3

4

5

6

7

15

5.9.1 RpFlowing

RpFlowing is an advanced park agent, that extends all ReservoirPark agent properties. RpFlowing is

characterized by continuous inflows and outflows that fill and unload parallel connected tank (called "maps"),
RpFlowing is used for "smoothing" outgoing flow products.

RpFlowing can operate in two different "smoothing" modes, depending on the
autoAdjustOutflowSpeed value.

Mode 1: The out speed (Vout(t)) at each moment is determined automatically by the out speed at the previous
moment (Vout(t-1)) and the maximum out speed change per step (∆Vout). It also takes into account restrictions on
the maximum (Vmax) and minimum (Vmin) values of out speed. This mode is usually used when RpFlowing is set
at the end of the scheme, and the outflow goes to a pipeline. In this case, the minimum and maximum pumping
speeds are determined by the performance of the pumping equipment, and the maximum speed change per
simulation step is dictated by the need for the tanks to "breathe," as well as the inadmissibility of excessive
hydrodynamic effects on the receiving gas pipeline.

Mode 2: RpFlowing is located within the scheme and also performs the function of "smoothing" the outgoing
flow. However, in this case, the out speed flow is entirely determined by the restrictions imposed by subsequent
nodes (for example, the total capacity of the plants located behind RpFlowing).

RpFlowing is characterized by the following state diagram (named sStates):
sInitial is the starting state. It is used for the time = 0 of establishing connections between all RpFlowing

components.
sDirectFlow is a direct flow mode. In this mode, the entrance of the RpFlowing is directly connected to the

exit. RpTank simulations are excluded from the calculation.
sFlowCorrection is a state in which the incoming flow is not equal to the shipment flow or the tanks loading

exceeds the "acceptable" range.
sSteadyFlow is a state in which the incoming flow is equal to the outgoing (with a given accuracy) and the

tank loading is in an "acceptable" range.
sPumpingDown is a state in which the incoming flow is zero and the model consistently reduces the

pumping speed to a minimum (and then zero) value.
 sOverflowProtection is a state of suspension of reception when the filling level of the tank farm is close to

critical.

The states sSteadyFlow, sPumpingDown and sOverflowProtection are available if RpFlowing is working

in Mode 1. All settings for RpFlowing states are set via the built-in Constant class.

5.9.2 RpAccumulative

RpAccumulative is advanced park agent, that extends all Reservoir Park agent properties. RpAccumulative
contains many options, which are necessary for "cumulative" reservoir parks. This agent implements procedures of
accumulation, passportization (compounding), and shipment of products. In addition, RpAccumulative contains built -
in mechanisms for tracking product shipment plans

You can connect one RpAccumulative to one or more ShipmentNode agents. In the second case,
RpAccumulative will strive to consistently meet the shipping requirements of each of the ShipmentNode
agents connected to it

HITS AND TIPS

1 This agent allows the creation of special requests for Pants to add additional mass to the Reservoir Park.
Each request is characterized by two parameters: priority and amount. All requests are collected in the Control agent
to manage their execution

2 If requests with priority A (aPriorityShipmentPlan) are included, then it is necessary to add link to one or
more ShipmentNodes agents. Each ShipmentNode agent pump product to fulfill the plan and passes it to
RpAccumulative. In turn, RpAccumulative forms its own request based on the ShipmentNode. However, in general,
the masses of ShipmentNode and RpAccumulative queries do not match. This is due to the presence of residues in
RpAccumulative tanks, losses, and the use of additional additives

3 RpAccumulative agent also contains ReservoirReallocator Class that allow to transfer tanks to or from
“reserve”. The concept of “tanks reserve” is used to account for the possible movement of reservoirs between different
parks, when the same tank can be used in different parks during the simulation.

16

5.10 Optimizer

Optimizer is an agent, that allows to set up and solve different kinds of linear programming (LP) problems

(for example, splitting the input flow between plants and plant lines with the objective of minimizing residuals). The
Optimizer agent can solve two types of LP problems.

The first type is "parametric", where user has a ready-made lpSolve file (*.lp) with specific parameters. In this
case, the Optimizer will automatically replace the parametric texts in the *.lp file with numeric values, solve the LP
problem, and save it with a new name. This type of task is useful for complex LP problems when the user needs to
see all the equations directly, but it is quite slow.

The second type allows the user to create own LP problem equations and solve it directly, by using the
internal Optimizer agent via Java ILP Interface.

HITS AND TIPS

1 In the case of parametric calculation, the Optimizer agent will try to find the source LP file in the folder
System.getProperty("user.dir") + "\\LP\\" + lpName + ".lp".

2 The optimizer agent contains public Java ILP variables, which help to formulate any LP problem equations
without creating an external LP file:

/**Class SolverFactoryLpSolve of Java ILP*/

public SolverFactoryLpSolve lpFactory = new SolverFactoryLpSolve();

/**Class Result of Java ILP*/

public Result lpResult;

/**Class Problem of Java ILP*/
public Problem lpProblem;

3 Please remember that parametric optimization is quite slow!

5.11 GasOwnNeeds

GasOwnNeeds is an agent, that allows to calculate the amount of gas for own needs (GON) and distribute

it among Plants. As usual, the GON flow depends on the season, list of Plants, their modes and load levels

KEY STEPS OF INITIALIZATION

public void initialize() {

 onAfterInitialize();

}

5.12 Dispose

Dispose is an agent, that allows to calculate the amount of disposed flows. In comparison with the standard

Anylogic FluidDispose, this agent enables the collection of the same type of flows (for example, gas flows per flare)
into one agent, saves the necessary statistics, and destroys flows

KEY STEPS OF INITIALIZATION

protected void initialize() {

 mixer.initialize(inputFlows, fEnter);

 handleAfterInitialize();

}

statistics = mixer.statistics; //dispose statistics is a mixer statistics type

17

5.13 FlowQuota

FlowQuota is an agent that allow to set periodic plans for pumping products. For example, set a plan for the

maximum monthly (or daily) pumping. Required to account for the maximum capacity of the pumping equipment. In
compare to the disponse() method available in the Fluid library valve, this agent also allows to make the constraint
periodic (i.e. daily or monthly)

KEY STEPS OF INITIALIZATION

protected void loadIniFile();

handleAfterInitialize();

HITS AND TIPS

1 The default value of quotaValue(), is loaded from the *.ini file into public temporary parsedQuotaLimit variable

5.14 ProductMixer

ProductMixer is an advanced product mixing agent, that allows for the optimal mixing of input flows and

product additives to create a desired product (such as petrol, kerosene, etc.). It is known that the creation of most
products is accompanied by a number of requirements (such as octane number, sulfur content, saturated vapor
pressure, aromatics, etc.). This agent takes all these requirements into account and mixes incoming flows in an
optimal way (assuming the additive of the requirements) to ensure their simultaneous fulfillment

 ProductMixer try’s to ensure all requirements at the assumption of additive of their values

KEY STEPS OF INITIALIZATION

constant = new Constant();

lpFactory = new SolverFactoryLpSolve();

lpFactory.setParameter(Solver.VERBOSE, 0);

statistics = new StatisticsProductMixer(this);

protected void loadIniFile();

Protected void initialize() {

 handleAfterInitialize();

}

HITS AND TIPS

1 If the isAutoCalculationEnabled is true, then the ProductMixer agent makes an automatic formulation and
solution of the LP problem. The objective function, which is the sum of the penalty functions with the corresponding
coefficients, is used as the objective function

ICON INDEX

 0

1

2

18

NAME PENALTY DESCRIPTION

shouldMinimizeAdditive= true

FLOW_MASS_RESIDUAL_FIRST 1E6 Unrecognized remnants of first-priority flows

FLOW_PENALTY 1E3 Additive usage amount

FLOW_PENALTY_MIN 1 Unprocessed product balance

FLOW_MASS_RESIDUAL_SECOND 1 Unrecognized remnants of second-priority flows

shouldMinimizeAdditive = false

FLOW_MASS_PRODUCT_TEXT -1 Maximize the exit of result product

5.15 LoadingRack

LoadingRack controls the loading of refined products into railway tanks/trucks at a loading rack, managing

train schedules, loading operations, wagon assignments, product quantities, supply/removal durations,
passportization, and overseeing the state machine for the loading workflow (supply/load/remove)

KEY STEPS OF INITIALIZATION

protected void loadIniFile();

private void initialize();

handleAfterInitialize();

 //Connect LoadingRack with enter and exit flows

protected void establishExternalConnections();

private void loadTrainSchedules();

4 AUXILIARY DATABASE

A key part of PRL is an auxiliary database that contains all information about products, Reservoir Parks,

Plants and other

PRL automatically checks for database tables in the AnyLogic project every time it starts. If the specified
tables are not found, PRL will return an error

To add an auxiliary database to your project:
1. In Anylogic please click on Palettes -> Manage Libraries -> Add. Add PRL to your project.
2. Add a PRL database to your model. You can find the DB_Refining.accdb database in the PRL folder.

At present, PRL has a ready - made database templates in Microsoft Access

19

4.1 Database references

a_constrains_types – a reference, containing a list of basic units of measurement. Users can change the names

FIELD NAME FIELD TYPE DESCRIPTION

constrain_type_id (id) Counter -

name (Name) Short text -

a_loading_racks_states – a reference, containing a list of basic stats of loading racks. Users can change the names

FIELD NAME FIELD TYPE DESCRIPTION

loading_racks_id (id) Counter -

name (Name) Short text -

a_object_types – a reference, containing a list of object types (Plant or Reservoir Park). Name field can be changed
by the user

FIELD NAME FIELD TYPE DESCRIPTION

a_object_type (id) Counter -

name (Name) Short text -

a_optimize_directions – a reference containing a list of optimization limitations. The name field can be changed by
the user. This table is used in the ProductMixer agent when creating and check the achievement of constraints

FIELD NAME FIELD TYPE DESCRIPTION

optimize_direction_id (id) Counter -

name (Name) Short text -

a_periods_types – a reference containing a list of planning durations. The name field can be changed by the user.
This table is used in the Source agent when loading plans

20

FIELD NAME FIELD TYPE DESCRIPTION

period_type_id (id) Counter -

name (Name) Short text -

a_product_mixer_constrains_names – a reference, containing a list of limitations when ProductMixer agents
attempts to create new types of products

FIELD NAME FIELD TYPE DESCRIPTION

constrain_name_id (id) Counter -

full_name (Full restriction name) Short text Full product name (optional)

short_name (Short name) Short text Short constrain name

unit (Unit) Short text Unit measure

description (Description) Short text -

a_product_mixer_constrains_values – a reference, containing a list of flow limitations values when ProductMixer
agents tries to create new types of products

FIELD NAME FIELD TYPE DESCRIPTION

constrain_value_id (id) Counter -

constrain_name_id (Restriction name) Number Link to the restriction name

product_short_id (Product name) Number -

if_enabled (Enable) boolean If false then PRL will not find this record

limit_value (Limit) Number -

direction_id (Direction) Number -

type_id (Type) Number Type: mass or volume

density (Density) Number Density for moving to volume limits

group_number (Group number) Number
Group of restrictions (for example for separation
restrictions in winter and in summer)

description (Description) Short text -

a_seasons – a reference containing a list of the seasons

FIELD NAME FIELD TYPE DESCRIPTION

season_type_id (id) Counter -

name (Name) Short text -

a_tank_states – a reference containing a list of the states of the ReservoirPark agents tanks

FIELD NAME FIELD TYPE DESCRIPTION

tank_state_id (id) Counter -

name (Name) Short text -

4.2 Database tables

checkbox_values – table, containing a list of Plant agents checkbox

21

FIELD NAME FIELD TYPE DESCRIPTION

id (id) Counter -

object_id (Name) Short text -

label_name (Caption) Short text -

if_enabled (Enable) boolean -

description (Description) Short text -

gas_own_needs – table, containing settings to calc gas own needs

FIELD NAME FIELD TYPE DESCRIPTION

id (id) Counter -

plant_id (Name) Number -

gon_value (Value (ton(s)/tons(s) enter)) Number -

if_enabled (Enable) boolean -

month_number (Month [1-12]) Number -

description (Description) Short text -

general – table, containing the basic options of model

FIELD NAME FIELD TYPE DESCRIPTION

id (id) Counter -

program_id Number Id in the PRL library functions

description Short text -

val (value) Number -

link_values – table, containing a list of links

FIELD NAME FIELD TYPE DESCRIPTION

link_id Counter -

object_id Counter -

if_enabled boolean -

parameter_value Number -

description Short text -

listbox_values – table, containing a list of values to fill ListBox

FIELD NAME FIELD TYPE DESCRIPTION

object_list_id (id) Counter -

object_id (Name) Number -

parameter_value (Value) Number -

if_enabled (Enable) boolean -

description (Description) Short text -

22

loading_racks– table, containing a list of the loading racks

FIELD NAME FIELD TYPE DESCRIPTION

rack_id (id) Counter -

rack_name (Name) Short text -

start_state (Start state) Number -

Initial_residue (Initial residue (ton(s))) Number -

If_enabled (Enable) boolean -

description (Description) Short text -

a_object_name – a reference containing a list of modeling objects (Plants, Reservoir Parks). Information about all
objects must be entered in this table

All modeling objects (such as Plants or Reservoir Parks) have a shortName variable. PRL will automatically
search for objects by their shortName in this table and load all object parameters from the database using
object_id

FIELD NAME FIELD TYPE DESCRIPTION

object_id (id) Counter -

short_name (Name) Short text

This field is used when PRL tries to link the model
with the database. Short names in this field MUST

be equal to the shortNames field of the Plant and
Reservoir Park agents.

full_name (Full name) Short text Optional describe field

if_enabled (Enable) Boolean If false then PRL will not find this record

type (Type) Number Type of object (Plant or Reservoir Park)

description (Description) Short text -

plant_capacity – table, containing information about Plant agents lines capacity

FIELD NAME FIELD TYPE DESCRIPTION

mode_id (id) Counter -

plant_id (Name) Number -

mode_name (Mode name) Short text -

min_load (Min load (ton(s)/h)) Number -

group_modes (Group modes) Number
If the value in this field is the same for several

modes, then the temporary mode will not be initiated

max_load (Max load (ton(s)/h)) Number -

if_enabled (Enable) boolean -

if_mode_default (Default mode) boolean -

description (Description) Short text -

plant_lines – table, containing information about Plant agents lines count

23

FIELD NAME FIELD TYPE DESCRIPTION

id (id) Counter -

plant_id (Name) Number -

If_enabled (Enable) Short text -

lines_count (Lines count (for plant) Number -

lines count (for plant) Number -

plant_modes_cluster - allows to set availability of Plant modes based on they relationships. For example, can be
used to set the modes of Plant B witch be available if a specific mode of Plant A is selected

FIELD NAME FIELD TYPE DESCRIPTION

id Counter -

source_mode_id (Source mode) Number -

dependent_mode_id (Dependent mode) Number -

if_enabled (Enable) Boolean -

description (Description) Short text -

plant_modes_separation – a reference contains Plant agents separation coefficients. These coefficients depend
on the type of incoming product flow entering the Plant agent. More information about recipes can be found here

FIELD NAME FIELD TYPE DESCRIPTION

plant_modes_sep_id (id) Counter -

plant_id (Name) Short text Link to the Plant

mode_id (Mode name) Number Link to the Plant mode

product_id (Product name) Number Link to the Plant out product

in_flow_id (Enter product name) Number Link to the Plant in flow

separation_value (Separation value) Number Coefficients of separation

if_enabled (Enable) Boolean If false then PRL will not find this record

description (Description) Short Text -

plant_modes_temporary – a reference that contains the relationships between Plant agents states. It allows for the
definition of temporary and permanent Plant modes. If a mode has a required temporary mode, then it must be
obtained on one line

FIELD NAME FIELD TYPE DESCRIPTION

plant_mode_state_id (id) Counter -

plant_id (Name) Number Link to the Plant

temporary_id (Temporary mode name) Number Link to the Plant temporary mode

mode_id (Mode name) Number Link to the Plant permanent mode

if_enabled (Enable) Number If false then PRL will not find this record

temporary_duration

(Temporary duration, hour(s))
Number Temporary duration

description (Description) Boolean -

24

plant_repairs – table, containing information about Plant agents repairs

FIELD NAME FIELD TYPE DESCRIPTION

plant_repair_id (id) Counter -

plant_id (Name) Number -

plant_line (Line) Number -

date_begin (Begin date) Date and time -

date_end (End date) Date and time -

if_enabled (Enable) boolean -

description (Description) Short text -

product – a reference containing a list of products

 Field short_name can’t contain spaces or special separation character "_"

Field short_name is case sensitive, that is, products names Oil and oil are interpret as different

FIELD NAME FIELD TYPE DESCRIPTION

product_id (id) Number -

short_name (Product name) Short text Short product (flow product) name

full_name (Full product name) Short text Full product name (optional)

hex_color (Product color (HEX)) Short text Product fluid color

if_enabled (Enable) Boolean If false then PRL will not find this record

density (Density (g/cm3)) Number
Density for using in ProductMixer agent and check

the volume restrictions

description (Description) Short text -

product_mixer_flow_constrains_values – table, containing information about the values of the limiting parameters
of the flows, that are used in the ProductMixer agent

FIELD NAME FIELD TYPE DESCRIPTION

flow_constrain_value_id (id) Counter

product_id (Product name) Number -

constrain_name_id (Constrain name) Number -

flow_constrain_value (Value) Number -

rp_accumulatives – table, containing information about the structure of RpAccumulative agent

25

FIELD NAME FIELD TYPE DESCRIPTION

rp_accumulative_id (id) Counter -

rp_id (Name) Number -

tank_name (Tank name) Short text -

min_load (Min load (ton(s))) Number -

max_load (Max load (ton(s))) Number -

capacity (Capacity (ton(s)) Number -

residual (Capacity (ton(s))) Number -

condition (State) Short text -

if_enabled (Enable) boolean -

description (Description) Short text -

rp_flowing – table, containing information about the structure of RpFlowing agent

FIELD NAME FIELD TYPE DESCRIPTION

rp_flowing_id (id) Counter -

rp_id (Name) Number -

tank_name (Map name) Short text -

min_load (Min map load (ton(s))) Number -

max_load (Max map load (ton(s))) Number -

capacity (Map capacity (ton(s))) Number -

residual (Residual (ton(s))) Number -

tank_count (Maps count) Number -

if_enabled (Enable) Boolean -

description (Description) Short text -

rp_modes_separation – a reference containing a list of the main coefficients of separation in Reservoir Parks

FIELD NAME FIELD TYPE DESCRIPTION

rp_mode_separation_id (id) Counter -

rp_id (Name) Number Link to the Reservoir Park

product_id (Product name) Number Link to the Reservoir Park out product

separation_value (Separation value) Number Coefficients of separation

if_enabled (Enable) boolean If false then PRL will not find this record

description (Description) Short text -

rp_tanks_repairs – table, containing the repairs of tanks

26

FIELD NAME FIELD TYPE DESCRIPTION

rp_tank_repair_id (id) Counter -

rp_id (Name) Number -

date_begin (Date start) Date time -

date_end (Date ebd) Date time -

if_enabled (Enable) Boolean -

description (Description) Short text -

shipment_exception – table, containing a list of product shipment exclusion dates for ShipmentNode

FIELD NAME FIELD TYPE DESCRIPTION

rp_unloading_exception_id (id) Counter -

day_value (Day) Number -

month_value (Month) Number -

year_value (Year (optional)) Number -

if_enabled (Enable) Boolean -

description (Description) Short text -

shipment_plans – table, containing product shipment plans

FIELD NAME FIELD TYPE DESCRIPTION

unload_production_plan_id (id) Counter -

product_id (Product name) Number -

plan_date (Period) Date time -

plan_value (Value (ton(s))) Number -

if_enabled (Enable) Boolean -

plan_period_type (Period type) Number -

description (Description) Short text -

source_names – a reference containing a list of the Source agents

FIELD NAME FIELD TYPE DESCRIPTION

source_id (id) Counter -

name (Source name) Short text Source name

name2 (Source name 2) Short text Second Source name

product_id (Product name) Number Link to the Source out product

group_number (Group number) Number
To combine sources whose flows are mixed before
entering the Plant

if_enabled (Enable) Boolean If false then PRL will not find this record

description (Description) Short text -

source_plans – table, containing a list of plans for incoming flows from Source agents

27

FIELD NAME FIELD TYPE DESCRIPTION

id (Id) Counter -

source_id (Name) Number -

period_start (Period) Date time -

primary_value (Period) Number -

if_enabled () Boolean -

type (Period type) Short text -

secondary_plan
(Secondary plan (ton(s)))

Number -

description (Description) Short text -

textbox_values – table, containing a list of text values

FIELD NAME FIELD TYPE DESCRIPTION

id (id) Counter -

object_id (Object name) Number -

label_name (Value) Date time -

if_enabled (Enable) Boolean -

description (Description) Short text -

train_loading_racks_preparation– table, containing a list of time to loading racks

FIELD NAME FIELD TYPE DESCRIPTION

rail_tanker_id Counter -

rail_tanker_id (Train name) Number -

if_enabled (Enable) Boolean -

description (Description) Short text -

Duration (Duration (h)) Number -

State (State name) Number -

train_schedule – table, containing a train arrival schedule

FIELD NAME FIELD TYPE DESCRIPTION

train_schedule_id (ID) Counter -

train_name (Train Name) Number -

arrival_date_time (Arrival date, time) Date and time -

rack_id (Loading rack) Number -

if_enabled (Enable) Boolean -

Description (Description) Short text -

expected_loading_time
(Loading time optional (h))

Number

Does not participate in calculations. Contains the

desired loading time of the train. Can be used to set,
for example, the maximum pumping speed from a

tank farm

28

train_wagon_assignment – table, containing a train wagon assignment

FIELD NAME FIELD TYPE DESCRIPTION

train_wagon_id (ID) Counter -

train_schedule_id (Train name) Number -

wagon_capacity

(Wagon capacity (ton(s)))
Number -

wagons_count (Wagons count) Number -

wagons_product_id (Wagon product) Number -

if_enabled (Enable) Boolean -

description (Description) Short Text -

5 CREATING AND EXECUTING THE PRODUCTS PRODUCTION “REQUESTS”

It is known that most of processing plants operate according to the same scheme: products that are produced
at the Plants pass through Reservoir Parks before shipment. Every Reservoir Park perform accumulation,
compounding (in some cases passportization) and product shipment. In this case, if you have an optimization
shipment plan for all products (based on optimization planning tools such as Aspen Pims), then you can set an
equivalent shipment plan of product for each of Reservoir Park.

The difficulty lies in that fact that Reservoir Parks of most processing Oil & Gas plants operate according to

more complex scheme. Personnel often performs to make an additional operations for filling or unloading tanks. For
example, set a large plan for the product shipment at next month. In this case it is necessary to fill tanks with
additionally mass to create starting reserves to fulfill plans for the next month. Such actions can be effectively
presented in the form of a demand (request) from Reservoir Parks to the Plans. Each request is characterized by
required product, mass, it’s priority (more on this below) and possibly other characteristics.

RpAccumulative agent contains four built-in types of product requests (requests are listed in order of
decreasing their priority)1

REQUEAST TYPE PRIORITY VARIABLE DESCRIPTION (NAME) DESCRIPTION

Shipment plan A
A: Fulfillment shipment plan

(aPriorityPlan)

Reflects most important requirement from the Reservoir
Park to Plants: additional product mass to complete

shipment plan at current month

Additional amount to
complete the plans

for the next month

B

B: Additional load to next month
(bPriorityNextMonth)

min plan to next month (tons)
(bPriorityNextMonthLimit)

additional mass (tons)
(bPriorityNextMonthAddMass)

Reflects requirement for additional mass to fulfill a plan for
the shipment of products in next month

Depends on two parameters:
bPriorityNextMonthLimit - minimum plan for shipment for the

next month for creating a request
 bPriorityNextMonthAddMass - requirement for additional

mass in Reservoir Park

Additional amount to
loading an active

tank to the minimum

acceptable level

C
C: Active tank additional load
min tank load to start proceed (tons)

cPriorityLevelStartProceed

Reflects requirement for additional mass to loading an
active tank to the minimum acceptable level. This level can

be determined, for example, by the minimum level of the

start of passportization

Additional user
mass entrance

D
D: Additional user mass entrance
dPriorityUserAmount

Reflects requirement for additional mass for some reason
specified by user

Each RpAccumulative consistently generates requests to complete the four types of requests listed above.
Note that the product shipment request (Shipment plan, priority A) is set to RpAccumulative agent by ShipmentNode
agent. ShipmentNode agent allows to automatically load and monitor the implementation of plans for the shipment
of any product. This allows to build more complex schemes for shipping products. In particular, "many-to-many"
relationships can be used, when products from several RpAccumulative agents can be used to fulfill any plan, and,
conversely, several types of products can be used to fulfill any one plan (for example, propane’s different brands can
be used to execute the propane-butane plan). If there was only one Reservoir Park, then all requests would be
fulfilled in order of decreasing priority.

1 In some cases, the unloading from the Reservoir park may slightly exceed the established shipment plan. This happens if between

the Reservoir park and the shipment node there is a LoadingPack, on the railway track of which there is a train with a total capacity of wagons
exceeding the established pumping plan

29

The task becomes much more complicated if alternative requests are received by Plants from different fleets
“competing” for their limited capacity. In this case, many factors have to be taken into account, such as the level of
current competition of plans, priority of requests, Reservoir Park load levels, minimizing switching between modes,
and others. Control agent features can be used to solve such complex tasks

6 PETROLEUM REFINING LIBRARY ENUMS

MeasurementType – types of PRL measuring

ReservoirParkRequest – ReservoirPark agent requests types

ReservoirParkState – ReservoirPark agent states

ShipmentAlgorithm – shipment algorithms

RpTankState – RpTank states

7 RECIPES

Recipes are the rules that relates the mass of the incoming flow to the outgoing flows of semi-products and
products, as well as the flow of losses. In PRL recipes can be set for both in Plant and ReservoirPark agents. The
recipes affect the output flows values and represent the separation coefficients. The example below shows how a
given "recipe" for the process of deethanization of unstable gas condensate (10%, 89%, 1%) results in a simulation
of separation on one of the Plant lines.

Plant

line 1

Loss, 1%

De-ethanization gas, 10%

Detailed condensate, 89%

Unstable
gas condensate

The recipe values for the PRL are the source data. To get recipe values, use specialized programs such
as Aspen Hysys, “test runs”, or expert values

 For every Plant agent, recipes are set in the plant_modes_separations database table. Each recipe depends

on the mode of the Plant, as well as the type of incoming flow. The last condition allows to calculate the weighted

average values of (mass) recipe values when more than one flows are sent to the Plant agent at the same time. In

ReservoirPark, recipes are set in the rp_modes_separation table. Recipes for ReserfoirPark agents reflect the

possibility of separating the mixture entering the tank as a result of "sludge" or other mechanisms.

 Plant and Reservoir Park agents recipes must have a loss flow. Otherwise, the error occurs

8 TYPES OF MEASURING

The PRL library allows to represent simulation model results in various units of measurement (for example, mass in

tons(s), speed (tons(s)/h). The active model measurement unit is contained in public static measType variable. In

addition, the PRL library allows the to change the active model measurement unit via the public

toggleMeasurementUnit() method.

9 FAQ

1 How do I name FluidExit and FluidEnter block to highlight the product name?

Answer: every FluidExit and FluidEnter Anylogic block should allow PRL to identify a linked product flow

name.

30

2 Are there any restrictions on the set date and time when the simulation model starts?

Answer: PRL does not contain any restrictions on the start date of the simulation. The initial simulation time
should correspond to the beginning of the day (00:00:00)

3 What is the difference between the results obtained on PRL and Aspen Pims (or analogs)?
 Answer: This systems solve two different problems. Aspen Pims allows to determine the optimal production

plan that ensures, for example, the maximum total margin income. Meanwhile, it is known that the possibilities of

analytical (in t.h. linear) mathematical optimization have quite serious limitations. In short, this is due to the inability

to take into account all the features of processing plants in linear (and non-linear) equation systems. On the contrary,

PRL allows you to take into account all key features as much as possible (and therefore check the optimal plans

used for feasibility) to build a balance that is as close to reality as possible. Thus, these systems are not opposed,

but complement each other.

